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ABSTRACT 

It is shown that  (1) every infinite-dimensionM Banach space admits a C 1 

Lipschitz map onto any separable Banach space, and (2) if the dual of 

a separable Banach space X contains a normalized, weakly null Banach- 

Saks sequence, then X admits a C °O map onto any separable Banach 

space. Subsequently, we generalize these results to mappings onto larger 

target spaces. 

I n t r o d u c t i o n  

By the classical Morse-Sard theorem (see [13]), a smooth surjective mapping 

of one euclidean space onto another must be submersive at some point, i.e., its 

derivative at some point must itself be surjective. If X, Y are infinite-dimensional 

Banach spaces, continuous//near mappings of X onto Y do not exist in general; 

thus it is natural  to ask whether X nevertheless admits a nonlinear transformation 

onto Y. 

A special case of a theorem from [3] implies that  an infinite-dimensional 

Banach space X admits a Lipschitz surjection onto any Banach space Y for 

which dens(X) _> dens(Y). (The density character dens(V) of a metric space 
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V is the smallest cardinality that  a dense subset of V can have,) The purpose 

of the present article is to establish the existence of smoother surjections under 

somewhat more restrictive assumptions. 

THEOREM 1: Every infinite-dimensional Banach space X admits a C 1 Lipschitz 

map onto any separable Banach space. 

Recall that  a weakly null sequence (xj) in a Banach space X is called Banach- 

Saks if, for any subsequence (yj) of (xj), the sequence of arithmetic means 

j = l  

tends to 0 as n --* ec. An example of a weakly null Banach-Saks sequence is 

provided by the standard basis of any fp(N) space for 1 < p < oo. 

THEOREM 2: I f  X* contains a normalized, weakly-null Banach-Saks sequence, 

then X admits a C °° mapping onto any separable Banach space. 

For mappings onto larger target spaces, we introduce the following terminol- 

ogy. Given a cardinal/C, we say that  a Banach space X satisfies condition (K:)I 

provided that  there exists a Banach space X ~ which admits a C 1 Lipschitz bump 

function, a collection (x~)~er C X with card(F) =/C,  and a bounded linear map 

T: X ---* X ~ such that  the vectors (Tx~)~cr  are e-separated for some ¢ > 0. 

We will say that  a Banach space X satisfies condition (~)o~ provided that  

there is a normalized collection (x*)~er C X* such that  card(F) = K and for 

each s > 0, there exists k(e) such that  card{a E F: ]x~(x)l > e} _< k(e) for each 

x E X with I[x[[ _< 1. 

In particular, the space c0(F) satisfies condition (K:)I whenever card(F) _> /C, 

and any superreflexive space X with dens(X) >/C satisfies condition (K:)oo. 

THEOREM 3: Let X be a Banach space, let 1C be a cardinal number, and let Y 

be a Banach space with dens(Y) <_ K:. 

1. I f  X satisfies condition (1C)1, then X admits a C 1 Lipschitz mapping onto 

Y .  

2. I f  X satisfies condition (1C)oo, then X admits a C °O mapping onto Y .  

To place these results in perspective, we recall that  Kadec [10] and Torunczyk 

[14] have proven that  if X, Y are infinite-dimensional Banach spaces, then 

dens(X) = dens(Y) precisely when X is homeomorphic to Y, i.e., when there ex- 

ists a continuous bijection X ~ Y with continuous inverse. In general, however, 
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such mappings cannot be very smooth; for example, the absence of C k bump 

functions on a space X implies that there is no proper C k map X ~ ~(1~). 

Finally, we recall that  it is presently unknown whether every infinite-dimensional 

Banach space admits a continuous linear map onto a separable infinite- 

dimensional Banach space (see [11, p. 12]). 

The surjections f :  X --~ Y constructed in the proofs of our theorems satisfy 

rank(Dr)  _< 1 at all points of X (compare [1, 4]). This rank restriction, although 

interesting, is evidently not a necessary condition for smooth surjections per 

se; nevertheless it reflects the fact that  the Fr~chet derivative of any smooth 

mapping between certain Banach spaces must be highly singular at each point. 

For example, it is well-known that for 1 < p < r < oc, every bounded linear 

operator er - ~  ~p is compact and thus approximable in the norm topology by 

finite rank operators. Consequently, no smooth surjection gr ~ gp is significantly 

more "efficent" (in the sense of [2], for example) than the rank-1 map given by 

Theorem 3. 

The proof of Theorem 3(1) extends our previous use of bump functions to 

construct smooth surjections in [4]. To prove Theorem 3(2), we develop in Section 

1 a suitable replacement for such functions using the geometric requirement of 

condition ()~)~. The main proof follows in Section 2, and we derive Theorems 1 

and 2 from Theorem 3 in Section 3. We conclude with some examples in Section 4. 

Throughout this paper, all Banach spaces under consideration are assumed to 

be real and infinite-dimensional. For a Banach space X we denote by Bx( r )  the 

ball of radius r centered at the origin of X. For a set F, we denote by co(F) 

the Banach space of all functions ~f: F ~ R such that for each E > 0, the set 

(~ E F: I~(~)1 > ~} is finite. For 1 _~ p < co, we denote by ~p(F) we denote 

the space of p-summable elements of co(F) with norm II'~ll = (~-~(~er I~/(~)IP) 1/p" 

Finally, we use the notation Z+ and N to distinguish between the positive and 

non-negative integers, respectively. 
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1. Condition (K:)~ for Banach spaces 

Consider a Banach space X with dual X* endowed with the standard dual norm. 

A subset (x*)~er  C X* is said to be semi-normallzed if 0 < inf~ ]ix*i] _< 

sups ]ix, i] < oo and n o r m a l i z e d  if ]ix,] ] = 1 for all a E F. Throughout this 

section, we will assume that X satisfies condition (/E)oo and let (x*)~er c X* be 

a normalized collection with the property that for each ¢ > 0, there is a number 

k(e) such that card{~ E F: ]x*(x)] > e} _< k(~) for all x E Bx(1) .  The starting 

point for our construction will be the following lemma. 

LEMMA 1.1: For each e > 0 there exist a subset F t c F and a semi-normalized 

collection (x~)~er, c X such that  

1. card(F I) =/E,  

2. x*~(x~) = 1 and Ix*(x~)[ < e t'or all a,/3 E F' with a ¢ t3. 

Proof: Let (x~)~er be any semi-normalized collection satisfying x* (x~) = 1 for 

all a E F. For each a E F, we define 

S~ = {Z E F: Z ¢ a and Ix;(x~)[ _> ~}. 

By assumption, there exists an integer K > 0 such that card(S~) _< K for all 

a E F. For any subset J C F, we set S j  = U ~ e j S ~ "  We will call a subset 

I C F good provided that I O S I  = 0. Evidently, each singleton {a} C F is good, 

and the union of an increasing nested sequence of good sets is good. By Zorn's 

lemma, there exist maximal good subsets of F. 

Let I0 be any maximal good subset of F, and, proceeding inductively, let Ik 

be a maximal good subset of 
k-1  

F \ U / ~  

i=O 

for k = 1 , . . . ,  K. A good subset I C F is maximal precisely when I N S~ ¢ 

for all a ~ I u $I. Since card(S j )  _< card(J) for any infinite J C F, it follows 

g I that either F \ Ui=0 ( ~ u si~) or at least one of the Ii is a good subset of F with 

cardinality JE, which we can take as F r. I 

The basic cube Q c X corresponding to the collection (x~)~er is defined as 

the set 

Q = {x E X: [x*(x)[ <_ 1 for all a E F}. 

It is easy to check that our condition on the x ,  requires that Q be an unbounded 

subset of X. 
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Next, we associate a smooth function h: X -~ R to (x*)~cr as follows. Let 

p: R - ,  R be a fixed C ~ function such that  ~ -- 1 on [ -1 ,  1] and p(x) = 0 when 

Ixl _> 2. Define 

= 1-I 
aEF 

By the property satisfied by the x~, only finitely many terms in the above product 

differ from 1 locally, and so h is well-defined and smooth. Note furthermore that  

h = 1 on the basic cube Q, while h(x) = 0 if Ix*(x)l _> 2 for any a • F. 

Additionally, the derivatives of the function h are bounded on bounded subsets 

of X. More precisely: 

LEMMA 1.2: The function h defined above has the property that for each 

n ,m E N the C TM norm ofh[Bx(n) is bounded. 

Proo~ Since the collection (z*)~er is normalized, any linear map from X into 

euclidean space 1~ k of the form 

X* * x (. 

has norm _< v ~  regardless of the choice of ai  E F. Now fix n E Z and note that  

for any x E Bx  (n), our choice of the x* implies that  

card{a e F: Ix*(x)l 1} = card{a E F: Ix*(x/n)l > i /n}  < k(1/n). 

From the equicontinuity of the collection (x*)~cr,  it follows that  each x C Bx  (n) 

has a neighborhood U such that  for all but at most k(1/n) indices a,  we have 

suPu Ix~l _< 1. 

Now define gk: R k N by gk(Yl,.. Yk) k --~ " '  = l - I i = l  ~ ( Y i ) .  From the preceding 

remarks, it follows that  on the ball Bx (n) C X, the function h can be represented 

locally as the composition of a linear map X ~ •k(1/n) of norm _< X / ~ / n )  with 

the function gk(1/~). Since gk(1/~) has bounded support,  its Cm-norm is bounded 

and our assertion follows. 

2. P r o o f  of  T h e o r e m  3 

In this section we give a detailed proof of Theorem 3(2) and sketch the similar 

and easier proof of Theorem 3(1). 
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Proof of  Theorem 3(2): Let X be a Banach space and (x*)~er C X* a normal- 

ized collection such that  for each e > 0, there exists a number k(e) satisfying 

card{  e r :  Ix (x)l > < 

for all x C Bx(1) .  By Lemma 1.1, we may furthermore assume that  there exists 

a collection (x~)aec C X such that  

x~(x~) = 1 and Ix*~(x~)l < g 

for all a ,  fl E F with ~ ~/3 .  Finally, we note that  X satisfies the conclusion of 

Theorem 3(2) whenever one of its quotient spaces does. Thus, we may assume 

that  the collection (x*)aer  is separating, i.e., 

('~ ker(x*) = 0. 
aEF 

Let Y be a Banach space with dens(Y) _< card(F). To prove the theorem, we 

will explicitly construct a C °O surjection X ~ Y. Set M = sup a ][xa][ _> 1, 

fix a positive constant e < (8M) -1, and let T~: X ~ X be the affine dilation 

T,~(x) = e (x + 5x~) for each a C F. By our choice of s, the cubes Qa = T~(Q), 

where Q is the basic cube defined in Section 1, are then pairwise disjoint and 

lie in the interior of Q. Let Qo = {Q}, and for k _> 1, define collections Qk of 

subcubes within Q by 

Qk -- {T~Q': a e F, Q' E Qk-1}. 

By a chain of cubes we will mean a sequence (Qi) such that  Qi e Q; and Qi+l c 

Qi for each i E N. If x ,x '  E Qi, our definitions imply that  [x~(x - x')l <_ 

2e i for all (~ e F, and thus Ni Qi consists of at most one element for each 

chain (Qi). To see that  every such intersection is indeed nonempty, note that  

the relation Qi = T a o T a . . .  T~_~Q defines a bijective correspondence between 

chains and integer sequences (ai) c F n. In terms of this correspondence, we have 
k " Q k  5. ~i=1 ¢*x~, ~ E for each k; by our choice of e, this series converges in norm 

to a vector in Bx(1) .  

Let ha = h o T ;  1, where the function h: X ~ R is defined as in Section 1. 

Each of the ha is then smooth, and their supports are disjoint and lie within Q. 

Choose a dense subset (Ya)aer in the unit ball of Y and define 

f ( x )  -- E ha (x ) . y~ .  
aEF 
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Clearly f is C °°, f (Q~)  = y~,. Moreover, Lemma 1.2 implies that the C k norm of 

f lSx(n),  denoted Iflk,n, is finite for every choice of k, n C N. and we may choose 

a sequence of positive constants (6k) such that ~ k  ~k e -ks lflk,4e-~ converges. 

Next, let Lik denote the union of all members of Qk, and define a sequence of 

mappings gk: X -~ Y by setting go = f ,  

{ gk-l(X) i f x  ~Qk, 
gk(x )= ( S o f o T - 1 ) ( x )  i f x C  6 Qk 

where S is the affine dilation mapping B y ( l )  onto the ball By(p,  6k) of radius fk 

centered at p = gk-l(Q') ,  and T now denotes the affine map sending the cube Q 

onto Q'. (Note that since f is by definition constant on each Q E Q1, it follows 

that for every k, the map gk-1 is constant on each Q 6 K:k.) 

We claim that the mappings gk converge to a C °O mapping X --+ Y. By 

construction, every point of X \ [']k L/k has a neighborhood on which all but 

finitely many of the gk coincide; since Nk l.fk C B x  (1), our claim reduces to prov- 

ing convergence on Bx(2) .  To this end, note that since Bx(2)  C T(Bx(4e -k ) ) ,  

we have the estimate 

Igk - gk-xlk,2 <-- ~k ~-k' [f[k,46_ k 

and by our choice of scaling constants ~k, the sequence (gk) must Coo-converge 

on Bx(2)  to a smooth map g: Bx(2)  --* Y. Consequently, the map g = limgk is 

defined and smooth on all of X. Additionally, boundedness of Igll,n for all R > 0 

implies that  g is Lipschitz on bounded subsets of X. (Since the basic cube Q is 

unbounded, g does not have bounded support and is not Lipschitz on all of X).  

To see that  g maps onto B y ( l ) ,  first note that for each Q' 6 Qk-1, the set 

{g(OQ"): Q" 6 Qk and Q" c Q'} 

is dense in By(p,  6k), where p = g(OQ'). Given y 6 B y ( l ) ,  we apply this 

observation inductively to choose a chain (Qi) such that for each i, ly -p i l  -< ~i+1, 

where pi = g(OQi). If x is the unique element of the intersection [~i Qi, then by 

continuity g(x) = y. 

In order to map X onto all of Y, first observe that  g = 0 outside of Q. For 

any fixed ~ E F, the mappings f,~(x) = n • g(x - 4nx~) have pairwise disjoint 

supports and map onto By(n) ,  respectively. Thus, the map F: X --* Y given by 

F = ~'~r~ fn is a C a surjection. | 
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Proof of Theorem 3(1) (Sketch): Suppose that  X is a Banach space satisfying 

condition (/C)1, so that  there exist a bounded collection (z~)~er C X, a Banach 

space X '  with C 1 Lipschitz bump functions, and a bounded linear map T: X 

X '  such that  the vectors T(z~) are 1-separated in X ' .  Choose r > 1 such that  

[[Tz~][ < r/2 for all a C F. Using any C 1 Lipschitz bump functions on X'  it is 

easy to construct a C 1 Lipschitz function s: X '  ~ 1~ such that  s = 1 on Bx(r)  and 

s(x) -- 0 whenever Ix[ > R for some R > r. Fix a positive constant e < (2R) -1 

and for each a E F let L~: X '  -* X '  be the affine map L~(x) = ex + Tz~. 

Given any Banach space Y with dens(Y) <_ /C, we can proceed exactly as in 

the proof of Theorem 3(2), substituting the Tz~ for the x~, the function s for 

h, the L~ for the T~, etc., to obtain a C 1 map g: X '  --~ Y which transforms the 
OO <DO 

set of vectors of the form Ei=l  Yz ,i = T for e r onto a 

ball in Y. (The Lipschitz property of s is needed to insure the C 1 convergence of 

the gk constructed as before.) Moreover, g has bounded support and is therefore 

Lipschitz on X ' ,  so that  the composition (g o T): X ~ Y is a C 1 Lipschitz map 

onto a neighborhood of the origin in Y. 

If  w • X is any vector satisfying IITw[I -- 1, then the mappings 

are C l, have the same Lipschitz constant as g o T, and have pairwise disjoint 

supports. Since Y = Un fn(X), the function F = ~-~n fn is a C 1 Lipschitz 

surjection X --* Y. I 

3. Proofs of Theorems I and 2 

By the Joseffson-Nissenzweig theorem, every infinite-dimensional Banach space 

admits a non-compact bounded linear map into c0(N). Since c0(N) admits a C 1 

bounded bump function, it follows that  any infinite-dimensional Banach space 

satisfies condition (R0)l, and so Theorem 3(1) implies Theorem 1. 

Next, we show that  the case K = R0 of Theorem 3(2) is similarly equiva- 

lent to Theorem 2. The following argument was given to me by E. Odell and 

H. Rosenthal during a visit to U. T. Austin in April, 1993. We begin with a 

useful corollary of Ramsey's  theorem (see [5]). 
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LEMMA 3.1: For any semi-normalized Banach-Saks sequence  (Xj) in a Banach 

space X there exists (A~) E c0(N) and (yj) C (xj) such that for any n <_ ml < 

m2 < "'" < mn~ 

~ Ymj < nan. 
j = l  

LEMMA 3.2: A Banach space X satistles condition (~o)o~ i[ and only iT X* 

contains a normalized, weakly null Banach-Saks sequence. 

Proof." Suppose X* contains a normalized, weakly null Banach-Saks sequence 

(:c~), and choose (Aj) C c0(N) and a subsequence (y~) C (x~) as in Lemma 3.1. 

Given s > 0, choose n such that An < e and set k(e) = 3n. Now suppose 

x E Bx(1) contradicts this choice, so that for some E > 0, we have 

card{j: ly;(x)l ~ d > k(~). 

Then this set contains n distinct indices rrtj :> • such that the corresponding 

numbers y*j (x) have the same sign. This implies 

~-~.y*j > ng > nan .  

j = l  

On the other hand, our choice of (y~) and (Aj) requires that 

~ y ~  < nan, 
j = l  

and we arrive at a contradiction. Thus, X satisfies condition (1%)~. 

To prove the converse, let (x~)jez + C X* be a normalized sequence with the 

property that for any e > 0, there exists k(e) such that for any x E Bx(1),  we 

have card{j e Z+: Ix~(x)I > ~} _< k(@ If (x;) is not weakly null, then there 

exists ~ > 0 and A C Bx** (1) such that IA(x~)[ > 2e for infinitely many indices j .  

By Goldstine's theorem, there then exists vector x E Bx  (1) such that ]x~(x)] > 

for more than k(e) indices j C Z+, which contradicts the definition of k(s). 

Next, fix an arbitrary subsequence (y;) of (x~) and define 

j = l  
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For any x E Bx(1)  we therefore have 

n 

j=l 

and so 

Consequently, 

3n _< nc + k(s). 

limsup fin _< e. 
n ~ o o  n 

Since e > 0 and (y~) were arbitrary, the sequence (x~) is Banach-Saks. | 

Isr. J. Math. 

4. C o n c l u d i n g  r e m a r k s  

In this section, we focus on some separable spaces illustrating the scope of our 

construction. Reflexive spaces whose duals possess the Banach-Saks property 

(see [5]) provide a large class of examples satisfying the hypotheses of Theorem 2. 

These include all reflexive B-convex spaces and the dual of any reflexive stable 

space. It is interesting to note that in fact condition (/C)~ can be checked directly 

in any super-reflexive space of density character/C using the theorem of Guarii-  

Guarii [8] and James [9] and the existence of (transfinite) basic sequences. Finally, 

Theorem 2 applies to the James space and its dual, as well as the Tsirelson space, 

the Schreier space (see [6]), and el(N). 
Turning to pathologies, we note that a dichotomy due to Rosenthal [12] (see 

[5, Prop. 2, p. 58]) implies 

COROLLARY 4.1: Let X be a separable, infinite-dimensional Banach space. Then 

X fails the hypotheses of Theorem 2 if and only if at least one of the following 

holds: 

1. Every semi-normalized weakly null sequence in X* has a subsequence with 

a spreading model isomorphic to ~1 (N). 

2. X* has the Schur property. 

Case (1) of this corollary is illustrated by X* = T, the Tsirelson space, and thus 

our construction does not apply to every reflexive Banach space. Similarly, the 

sequence space c0(N) fails Theorem 2 since its dual ~1 (N) has the Schur property. 

It would be interesting to determine whether there exist separable spaces X, Y 



Vol. 100, 1997 SMOOTH, NONLINEAR SURJECTIONS 219 

such that the image of every smooth map X ~ Y has empty interior. For 

example, an answer to the following question appears to be unknown 

QUESTION 4.2: Does there exist a C a map of co(N) onto an open subset of the 

Hilbert space g2(N) ? 
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