ON SMOOTH, NONLINEAR SURJECTIONS OF BANACH SPACES

ΒY

S. M. BATES*

Department of Mathematics, Columbia University New York, NY 10027, USA e-mail: smb@math.columbia.edu

ABSTRACT

It is shown that (1) every infinite-dimensional Banach space admits a C^1 Lipschitz map onto any separable Banach space, and (2) if the dual of a separable Banach space X contains a normalized, weakly null Banach-Saks sequence, then X admits a C^{∞} map onto any separable Banach space. Subsequently, we generalize these results to mappings onto larger target spaces.

Introduction

By the classical Morse-Sard theorem (see [13]), a smooth surjective mapping of one euclidean space onto another must be submersive at some point, i.e., its derivative at some point must itself be surjective. If X, Y are infinite-dimensional Banach spaces, continuous *linear* mappings of X onto Y do not exist in general; thus it is natural to ask whether X nevertheless admits a nonlinear transformation onto Y.

A special case of a theorem from [3] implies that an infinite-dimensional Banach space X admits a Lipschitz surjection onto any Banach space Y for which dens $(X) \ge dens(Y)$. (The density character dens(V) of a metric space

^{*} Supported by an NSF Postdoctoral Fellowship in Mathematics. Received October 20, 1994 and in revised form April 1, 1996

V is the smallest cardinality that a dense subset of V can have.) The purpose of the present article is to establish the existence of smoother surjections under somewhat more restrictive assumptions.

THEOREM 1: Every infinite-dimensional Banach space X admits a C^1 Lipschitz map onto any separable Banach space.

Recall that a weakly null sequence (x_j) in a Banach space X is called Banach-Saks if, for any subsequence (y_j) of (x_j) , the sequence of arithmetic means

$$\frac{1}{n} \Big\| \sum_{j=1}^n y_j \Big\|$$

tends to 0 as $n \to \infty$. An example of a weakly null Banach-Saks sequence is provided by the standard basis of any $\ell_p(\mathbb{N})$ space for 1 .

THEOREM 2: If X^* contains a normalized, weakly-null Banach-Saks sequence, then X admits a C^{∞} mapping onto any separable Banach space.

For mappings onto larger target spaces, we introduce the following terminology. Given a cardinal \mathcal{K} , we say that a Banach space X satisfies condition $(\mathcal{K})_1$ provided that there exists a Banach space X' which admits a C^1 Lipschitz bump function, a collection $(x_{\alpha})_{\alpha \in \Gamma} \subset X$ with $\operatorname{card}(\Gamma) = \mathcal{K}$, and a bounded linear map $T: X \to X'$ such that the vectors $(Tx_{\alpha})_{\alpha \in \Gamma}$ are ε -separated for some $\varepsilon > 0$.

We will say that a Banach space X satisfies condition $(\mathcal{K})_{\infty}$ provided that there is a normalized collection $(x_{\alpha}^*)_{\alpha \in \Gamma} \subset X^*$ such that $\operatorname{card}(\Gamma) = \mathcal{K}$ and for each $\varepsilon > 0$, there exists $k(\varepsilon)$ such that $\operatorname{card}\{\alpha \in \Gamma : |x_{\alpha}^*(x)| > \varepsilon\} \leq k(\varepsilon)$ for each $x \in X$ with $||x|| \leq 1$.

In particular, the space $c_0(\Gamma)$ satisfies condition $(\mathcal{K})_1$ whenever $\operatorname{card}(\Gamma) \geq \mathcal{K}$, and any superreflexive space X with dens $(X) \geq \mathcal{K}$ satisfies condition $(\mathcal{K})_{\infty}$.

THEOREM 3: Let X be a Banach space, let \mathcal{K} be a cardinal number, and let Y be a Banach space with dens $(Y) \leq \mathcal{K}$.

- 1. If X satisfies condition $(\mathcal{K})_1$, then X admits a C^1 Lipschitz mapping onto Y.
- 2. If X satisfies condition $(\mathcal{K})_{\infty}$, then X admits a C^{∞} mapping onto Y.

To place these results in perspective, we recall that Kadec [10] and Torunczyk [14] have proven that if X, Y are infinite-dimensional Banach spaces, then dens(X) = dens(Y) precisely when X is homeomorphic to Y, i.e., when there exists a continuous bijection $X \to Y$ with continuous inverse. In general, however,

Vol. 100, 1997

211

such mappings cannot be very smooth; for example, the absence of C^k bump functions on a space X implies that there is no proper C^k map $X \to \ell_2(\mathbb{N})$. Finally, we recall that it is presently unknown whether every infinite-dimensional Banach space admits a continuous linear map onto a separable infinitedimensional Banach space (see [11, p. 12]).

The surjections $f: X \to Y$ constructed in the proofs of our theorems satisfy rank $(Df) \leq 1$ at all points of X (compare [1, 4]). This rank restriction, although interesting, is evidently not a necessary condition for smooth surjections per se; nevertheless it reflects the fact that the Fréchet derivative of any smooth mapping between certain Banach spaces must be highly singular at each point. For example, it is well-known that for 1 , every bounded linear $operator <math>\ell_r \to \ell_p$ is compact and thus approximable in the norm topology by finite rank operators. Consequently, no smooth surjection $\ell_r \to \ell_p$ is significantly more "efficent" (in the sense of [2], for example) than the rank-1 map given by Theorem 3.

The proof of Theorem 3(1) extends our previous use of bump functions to construct smooth surjections in [4]. To prove Theorem 3(2), we develop in Section 1 a suitable replacement for such functions using the geometric requirement of condition $(\mathcal{K})_{\infty}$. The main proof follows in Section 2, and we derive Theorems 1 and 2 from Theorem 3 in Section 3. We conclude with some examples in Section 4.

Throughout this paper, all Banach spaces under consideration are assumed to be real and infinite-dimensional. For a Banach space X we denote by $B_X(r)$ the ball of radius r centered at the origin of X. For a set Γ , we denote by $c_0(\Gamma)$ the Banach space of all functions $\gamma: \Gamma \to \mathbb{R}$ such that for each $\varepsilon > 0$, the set $\{\alpha \in \Gamma: |\gamma(\alpha)| > \varepsilon\}$ is finite. For $1 \leq p < \infty$, we denote by $\ell_p(\Gamma)$ we denote the space of p-summable elements of $c_0(\Gamma)$ with norm $||\gamma|| = (\sum_{\alpha \in \Gamma} |\gamma(\alpha)|^p)^{1/p}$. Finally, we use the notation \mathbb{Z}_+ and N to distinguish between the positive and non-negative integers, respectively.

ACKNOWLEDGEMENT: I am happy to thank Y. Benyamini, W. Johnson, E. Odell and H. Rosenthal for their generous advice and encouragement throughout the preparation of this work.

1. Condition $(\mathcal{K})_{\infty}$ for Banach spaces

Consider a Banach space X with dual X* endowed with the standard dual norm. A subset $(x_{\alpha}^{*})_{\alpha \in \Gamma} \subset X^{*}$ is said to be **semi-normalized** if $0 < \inf_{\alpha} ||x_{\alpha}^{*}|| \leq \sup_{\alpha} ||x_{\alpha}^{*}|| < \infty$ and **normalized** if $||x_{\alpha}^{*}|| = 1$ for all $\alpha \in \Gamma$. Throughout this section, we will assume that X satisfies condition $(\mathcal{K})_{\infty}$ and let $(x_{\alpha}^{*})_{\alpha \in \Gamma} \subset X^{*}$ be a normalized collection with the property that for each $\varepsilon > 0$, there is a number $k(\varepsilon)$ such that $\operatorname{card}\{\alpha \in \Gamma : |x_{\alpha}^{*}(x)| > \varepsilon\} \leq k(\varepsilon)$ for all $x \in B_{X}(1)$. The starting point for our construction will be the following lemma.

LEMMA 1.1: For each $\varepsilon > 0$ there exist a subset $\Gamma' \subset \Gamma$ and a semi-normalized collection $(x_{\alpha})_{\alpha \in \Gamma'} \subset X$ such that

1. $\operatorname{card}(\Gamma') = \mathcal{K},$

2.
$$x^*_{\alpha}(x_{\alpha}) = 1$$
 and $|x^*_{\alpha}(x_{\beta})| < \varepsilon$ for all $\alpha, \beta \in \Gamma'$ with $\alpha \neq \beta$.

Proof: Let $(x_{\alpha})_{\alpha \in \Gamma}$ be any semi-normalized collection satisfying $x_{\alpha}^{*}(x_{\alpha}) = 1$ for all $\alpha \in \Gamma$. For each $\alpha \in \Gamma$, we define

$$S_{\alpha} = \{ \beta \in \Gamma : \beta \neq \alpha \text{ and } |x_{\beta}^*(x_{\alpha})| \ge \varepsilon \}.$$

By assumption, there exists an integer K > 0 such that $\operatorname{card}(S_{\alpha}) \leq K$ for all $\alpha \in \Gamma$. For any subset $J \subset \Gamma$, we set $S_J = \bigcup_{\alpha \in J} S_{\alpha}$. We will call a subset $I \subset \Gamma$ good provided that $I \cap S_I = \emptyset$. Evidently, each singleton $\{\alpha\} \subset \Gamma$ is good, and the union of an increasing nested sequence of good sets is good. By Zorn's lemma, there exist maximal good subsets of Γ .

Let I_0 be any maximal good subset of Γ , and, proceeding inductively, let I_k be a maximal good subset of

$$\Gamma \smallsetminus \bigcup_{i=0}^{k-1} I_i$$

for k = 1, ..., K. A good subset $I \subset \Gamma$ is maximal precisely when $I \cap S_{\alpha} \neq \emptyset$ for all $\alpha \notin I \cup S_I$. Since $\operatorname{card}(S_J) \leq \operatorname{card}(J)$ for any infinite $J \subset \Gamma$, it follows that either $\Gamma \smallsetminus \bigcup_{i=0}^{K} (I_i \cup S_{I_i})$ or at least one of the I_i is a good subset of Γ with cardinality \mathcal{K} , which we can take as Γ' .

The basic cube $Q \subset X$ corresponding to the collection $(x^*_{\alpha})_{\alpha \in \Gamma}$ is defined as the set

$$Q = \{ x \in X \colon |x_{\alpha}^{*}(x)| \le 1 \text{ for all } \alpha \in \Gamma \}.$$

It is easy to check that our condition on the x^*_{α} requires that Q be an unbounded subset of X.

Vol. 100, 1997

Next, we associate a smooth function $h: X \to \mathbb{R}$ to $(x_{\alpha}^*)_{\alpha \in \Gamma}$ as follows. Let $\varphi: \mathbb{R} \to \mathbb{R}$ be a fixed C^{∞} function such that $\varphi = 1$ on [-1, 1] and $\varphi(x) = 0$ when $|x| \ge 2$. Define

$$h(x) = \prod_{\alpha \in \Gamma} \varphi(x_{\alpha}^*(x)).$$

By the property satisfied by the x_{α}^* , only finitely many terms in the above product differ from 1 locally, and so h is well-defined and smooth. Note furthermore that h = 1 on the basic cube Q, while h(x) = 0 if $|x_{\alpha}^*(x)| \ge 2$ for any $\alpha \in \Gamma$. Additionally, the derivatives of the function h are bounded on bounded subsets of X. More precisely:

LEMMA 1.2: The function h defined above has the property that for each $n, m \in \mathbb{N}$ the C^m norm of $h|_{B_X(n)}$ is bounded.

Proof: Since the collection $(x^*_{\alpha})_{\alpha \in \Gamma}$ is normalized, any linear map from X into euclidean space \mathbb{R}^k of the form

$$x \mapsto (x_{\alpha_1}^*(x), x_{\alpha_2}^*(x), \dots, x_{\alpha_k}^*(x))$$

has norm $\leq \sqrt{k}$ regardless of the choice of $\alpha_i \in \Gamma$. Now fix $n \in \mathbb{Z}$ and note that for any $x \in B_X(n)$, our choice of the x_{α}^* implies that

 $\operatorname{card}\{\alpha \in \Gamma \colon |x^*(x)| \ge 1\} = \operatorname{card}\{\alpha \in \Gamma \colon |x^*(x/n)| \ge 1/n\} \le k(1/n).$

From the equicontinuity of the collection $(x_{\alpha}^*)_{\alpha \in \Gamma}$, it follows that each $x \in B_X(n)$ has a neighborhood U such that for all but at most k(1/n) indices α , we have $\sup_U |x_{\alpha}^*| \leq 1$.

Now define $g_k: \mathbb{R}^k \to \mathbb{R}$ by $g_k(y_1, \ldots, y_k) = \prod_{i=1}^k \varphi(y_i)$. From the preceding remarks, it follows that on the ball $B_X(n) \subset X$, the function h can be represented locally as the composition of a linear map $X \to \mathbb{R}^{k(1/n)}$ of norm $\leq \sqrt{k(1/n)}$ with the function $g_{k(1/n)}$. Since $g_{k(1/n)}$ has bounded support, its \mathbb{C}^m -norm is bounded and our assertion follows.

2. Proof of Theorem 3

In this section we give a detailed proof of Theorem 3(2) and sketch the similar and easier proof of Theorem 3(1).

S. M. BATES

Proof of Theorem 3(2): Let X be a Banach space and $(x^*_{\alpha})_{\alpha \in \Gamma} \subset X^*$ a normalized collection such that for each $\varepsilon > 0$, there exists a number $k(\varepsilon)$ satisfying

$$\operatorname{card}\{\alpha \in \Gamma : |x_{\alpha}^{*}(x)| > \varepsilon\} \le k(\varepsilon)$$

for all $x \in B_X(1)$. By Lemma 1.1, we may furthermore assume that there exists a collection $(x_{\alpha})_{\alpha \in \Gamma} \subset X$ such that

$$x^*_lpha(x_lpha) = 1 \quad ext{ and } \quad |x^*_eta(x_lpha)| < rac{1}{5}$$

for all $\alpha, \beta \in \Gamma$ with $\alpha \neq \beta$. Finally, we note that X satisfies the conclusion of Theorem 3(2) whenever one of its quotient spaces does. Thus, we may assume that the collection $(x_{\alpha}^*)_{\alpha \in \Gamma}$ is separating, i.e.,

$$\bigcap_{\alpha\in\Gamma}\ker(x_{\alpha}^*)=0.$$

Let Y be a Banach space with dens(Y) $\leq \operatorname{card}(\Gamma)$. To prove the theorem, we will explicitly construct a C^{∞} surjection $X \to Y$. Set $M = \sup_{\alpha} ||x_{\alpha}|| \geq 1$, fix a positive constant $\varepsilon < (8M)^{-1}$, and let $T_{\alpha} \colon X \to X$ be the affine dilation $T_{\alpha}(x) = \varepsilon (x + 5x_{\alpha})$ for each $\alpha \in \Gamma$. By our choice of ε , the cubes $Q_{\alpha} = T_{\alpha}(Q)$, where Q is the basic cube defined in Section 1, are then pairwise disjoint and lie in the interior of Q. Let $Q_0 = \{Q\}$, and for $k \geq 1$, define collections Q_k of subcubes within Q by

$$\mathcal{Q}_k = \{ T_\alpha Q' \colon \alpha \in \Gamma, Q' \in \mathcal{Q}_{k-1} \}.$$

By a chain of cubes we will mean a sequence (Q^i) such that $Q^i \in Q_i$ and $Q^{i+1} \subset Q^i$ for each $i \in \mathbb{N}$. If $x, x' \in Q^i$, our definitions imply that $|x_{\alpha}^*(x-x')| \leq 2\varepsilon^i$ for all $\alpha \in \Gamma$, and thus $\bigcap_i Q^i$ consists of at most one element for each chain (Q^i) . To see that every such intersection is indeed nonempty, note that the relation $Q^i = T_{\alpha_0}T_{\alpha_1}\cdots T_{\alpha_{i-1}}Q$ defines a bijective correspondence between chains and integer sequences $(\alpha_i) \in \Gamma^{\mathbb{N}}$. In terms of this correspondence, we have $5 \cdot \sum_{i=1}^k \varepsilon^i x_{\alpha_{i-1}} \in Q^k$ for each k; by our choice of ε , this series converges in norm to a vector in $B_X(1)$.

Let $h_{\alpha} = h \circ T_{\alpha}^{-1}$, where the function $h: X \to \mathbb{R}$ is defined as in Section 1. Each of the h_{α} is then smooth, and their supports are disjoint and lie within Q. Choose a dense subset $(y_{\alpha})_{\alpha \in \Gamma}$ in the unit ball of Y and define

$$f(x) = \sum_{\alpha \in \Gamma} h_{\alpha}(x) \cdot y_{\alpha}.$$

Clearly f is C^{∞} , $f(Q_{\alpha}) = y_{\alpha}$. Moreover, Lemma 1.2 implies that the \mathbf{C}^{k} norm of $f|_{B_{X}(n)}$, denoted $|f|_{k,n}$, is finite for every choice of $k, n \in \mathbb{N}$, and we may choose a sequence of positive constants (δ_{k}) such that $\sum_{k} \delta_{k} \varepsilon^{-k^{2}} |f|_{k,4\varepsilon^{-k}}$ converges.

Next, let \mathcal{U}_k denote the union of all members of \mathcal{Q}_k , and define a sequence of mappings $g_k: X \to Y$ by setting $g_0 = f$,

$$g_k(x) = \begin{cases} g_{k-1}(x) & \text{if } x \notin \mathcal{U}_k \\ (S \circ f \circ T^{-1})(x) & \text{if } x \in Q' \in \mathcal{Q}_k \end{cases}$$

where S is the affine dilation mapping $B_Y(1)$ onto the ball $B_Y(p, \delta_k)$ of radius δ_k centered at $p = g_{k-1}(Q')$, and T now denotes the affine map sending the cube Q onto Q'. (Note that since f is by definition constant on each $Q \in Q_1$, it follows that for every k, the map g_{k-1} is constant on each $Q \in \mathcal{K}_k$.)

We claim that the mappings g_k converge to a C^{∞} mapping $X \to Y$. By construction, every point of $X \setminus \bigcap_k \mathcal{U}_k$ has a neighborhood on which all but finitely many of the g_k coincide; since $\bigcap_k \mathcal{U}_k \subset B_X(1)$, our claim reduces to proving convergence on $B_X(2)$. To this end, note that since $B_X(2) \subset T(B_X(4\varepsilon^{-k}))$, we have the estimate

$$|g_k - g_{k-1}|_{k,2} \le \delta_k \, \varepsilon^{-k^2} |f|_{k,4\varepsilon^{-k}}$$

and by our choice of scaling constants δ_k , the sequence (g_k) must C^{∞} -converge on $B_X(2)$ to a smooth map $g: B_X(2) \to Y$. Consequently, the map $g = \lim g_k$ is defined and smooth on all of X. Additionally, boundedness of $|g|_{1,R}$ for all R > 0implies that g is Lipschitz on bounded subsets of X. (Since the basic cube Q is unbounded, g does not have bounded support and is not Lipschitz on all of X).

To see that g maps onto $B_Y(1)$, first note that for each $Q' \in \mathcal{Q}_{k-1}$, the set

$$\{g(\partial Q''): Q'' \in \mathcal{Q}^k \text{ and } Q'' \subset Q'\}$$

is dense in $B_Y(p, \delta_k)$, where $p = g(\partial Q')$. Given $y \in B_Y(1)$, we apply this observation inductively to choose a chain (Q^i) such that for each i, $|y-p_i| \leq \delta_{i+1}$, where $p_i = g(\partial Q^i)$. If x is the unique element of the intersection $\bigcap_i Q^i$, then by continuity g(x) = y.

In order to map X onto all of Y, first observe that g = 0 outside of Q. For any fixed $\alpha \in \Gamma$, the mappings $f_n(x) = n \cdot g(x - 4nx_\alpha)$ have pairwise disjoint supports and map onto $B_Y(n)$, respectively. Thus, the map $F: X \to Y$ given by $F = \sum_n f_n$ is a C^{∞} surjection. S. M. BATES

Proof of Theorem 3(1) (Sketch): Suppose that X is a Banach space satisfying condition $(\mathcal{K})_1$, so that there exist a bounded collection $(z_{\alpha})_{\alpha \in \Gamma} \subset X$, a Banach space X' with C^1 Lipschitz bump functions, and a bounded linear map $T: X \to$ X' such that the vectors $T(z_{\alpha})$ are 1-separated in X'. Choose r > 1 such that $||Tz_{\alpha}|| < r/2$ for all $\alpha \in \Gamma$. Using any C^1 Lipschitz bump functions on X' it is easy to construct a C^1 Lipschitz function $s: X' \to \mathbb{R}$ such that s = 1 on $B_X(r)$ and s(x) = 0 whenever |x| > R for some R > r. Fix a positive constant $\varepsilon < (2R)^{-1}$ and for each $\alpha \in \Gamma$ let $L_{\alpha}: X' \to X'$ be the affine map $L_{\alpha}(x) = \varepsilon x + Tz_{\alpha}$.

Given any Banach space Y with dens(Y) $\leq \mathcal{K}$, we can proceed exactly as in the proof of Theorem 3(2), substituting the Tz_{α} for the x_{α} , the function s for h, the L_{α} for the T_{α} , etc., to obtain a C^1 map $g: X' \to Y$ which transforms the set of vectors of the form $\sum_{i=1}^{\infty} \varepsilon^i Tz_{\alpha_{i-1}} = T\left(\sum_{i=1}^{\infty} \varepsilon^i z_{\alpha_{i-1}}\right)$ for $\alpha_{i-1} \in \Gamma$ onto a ball in Y. (The Lipschitz property of s is needed to insure the C^1 convergence of the g_k constructed as before.) Moreover, g has bounded support and is therefore Lipschitz on X', so that the composition $(g \circ T): X \to Y$ is a C^1 Lipschitz map onto a neighborhood of the origin in Y.

If $w \in X$ is any vector satisfying ||Tw|| = 1, then the mappings

$$f_n(x) = n \cdot (g \circ T) \left(\frac{x - 4^n R w}{n} \right)$$

are C^1 , have the same Lipschitz constant as $g \circ T$, and have pairwise disjoint supports. Since $Y = \bigcup_n f_n(X)$, the function $F = \sum_n f_n$ is a C^1 Lipschitz surjection $X \to Y$.

3. Proofs of Theorems 1 and 2

By the Joseffson-Nissenzweig theorem, every infinite-dimensional Banach space admits a non-compact bounded linear map into $c_0(\mathbb{N})$. Since $c_0(\mathbb{N})$ admits a C^1 bounded bump function, it follows that any infinite-dimensional Banach space satisfies condition $(\aleph_0)_1$, and so Theorem 3(1) implies Theorem 1.

Next, we show that the case $\mathcal{K} = \aleph_0$ of Theorem 3(2) is similarly equivalent to Theorem 2. The following argument was given to me by E. Odell and H. Rosenthal during a visit to U. T. Austin in April, 1993. We begin with a useful corollary of Ramsey's theorem (see [5]). Vol. 100, 1997

LEMMA 3.1: For any semi-normalized Banach-Saks sequence (x_j) in a Banach space X there exists $(\lambda_n) \in c_0(\mathbb{N})$ and $(y_j) \subset (x_j)$ such that for any $n \leq m_1 < m_2 < \cdots < m_n$,

$$\left\|\sum_{j=1}^n y_{m_j}\right\| \le n\lambda_n.$$

LEMMA 3.2: A Banach space X satisfies condition $(\aleph_0)_{\infty}$ if and only if X^{*} contains a normalized, weakly null Banach-Saks sequence.

Proof: Suppose X^* contains a normalized, weakly null Banach-Saks sequence (x_j^*) , and choose $(\lambda_j) \in c_0(\mathbb{N})$ and a subsequence $(y_j^*) \subset (x_j^*)$ as in Lemma 3.1. Given $\varepsilon > 0$, choose n such that $\lambda_n < \varepsilon$ and set $k(\varepsilon) = 3n$. Now suppose $x \in B_X(1)$ contradicts this choice, so that for some $\varepsilon > 0$, we have

$$\operatorname{card} \{ j \colon |y_j^*(x)| \geq \varepsilon \} > k(\varepsilon).$$

Then this set contains n distinct indices $m_j > n$ such that the corresponding numbers $y_{m_j}^*(x)$ have the same sign. This implies

$$\left\|\sum_{j=1}^n y_{m_j}^*\right\| \ge n\varepsilon > n\lambda_n.$$

On the other hand, our choice of (y_j^*) and (λ_j) requires that

$$\Big\|\sum_{j=1}^n y^*_{m_j}\Big\| < n\lambda_n$$

and we arrive at a contradiction. Thus, X satisfies condition $(\aleph_0)_{\infty}$.

To prove the converse, let $(x_j^*)_{j \in \mathbb{Z}_+} \subset X^*$ be a normalized sequence with the property that for any $\varepsilon > 0$, there exists $k(\varepsilon)$ such that for any $x \in B_X(1)$, we have card $\{j \in \mathbb{Z}_+: |x_j^*(x)| > \varepsilon\} \le k(\varepsilon)$. If (x_j^*) is not weakly null, then there exists $\varepsilon > 0$ and $\lambda \in B_{X^{**}}(1)$ such that $|\lambda(x_j^*)| > 2\varepsilon$ for infinitely many indices j. By Goldstine's theorem, there then exists vector $x \in B_X(1)$ such that $|x_j^*(x)| \ge \varepsilon$ for more than $k(\varepsilon)$ indices $j \in \mathbb{Z}_+$, which contradicts the definition of $k(\varepsilon)$.

Next, fix an arbitrary subsequence (y_i^*) of (x_i^*) and define

$$\beta_n = \bigg\| \sum_{j=1}^n y_j^* \bigg\|.$$

$$\Big|\sum_{j=1}^n y_j^*(x)\Big| \le n\varepsilon + k(\varepsilon),$$

and so

$$\beta_n \le n\varepsilon + k(\varepsilon)$$

Consequently,

$$\limsup_{n\to\infty}\frac{\beta_n}{n}\leq\varepsilon.$$

Since $\varepsilon > 0$ and (y_i^*) were arbitrary, the sequence (x_i^*) is Banach-Saks.

4. Concluding remarks

In this section, we focus on some separable spaces illustrating the scope of our construction. Reflexive spaces whose duals possess the Banach-Saks property (see [5]) provide a large class of examples satisfying the hypotheses of Theorem 2. These include all reflexive *B*-convex spaces and the dual of any reflexive stable space. It is interesting to note that in fact condition $(\mathcal{K})_{\infty}$ can be checked directly in any super-reflexive space of density character \mathcal{K} using the theorem of Guarii-Guarii [8] and James [9] and the existence of (transfinite) basic sequences. Finally, Theorem 2 applies to the James space and its dual, as well as the Tsirelson space, the Schreier space (see [6]), and $\ell_1(\mathbb{N})$.

Turning to pathologies, we note that a dichotomy due to Rosenthal [12] (see [5, Prop. 2, p. 58]) implies

COROLLARY 4.1: Let X be a separable, infinite-dimensional Banach space. Then X fails the hypotheses of Theorem 2 if and only if at least one of the following holds:

- 1. Every semi-normalized weakly null sequence in X^* has a subsequence with a spreading model isomorphic to $\ell_1(\mathbb{N})$.
- 2. X^* has the Schur property.

Case (1) of this corollary is illustrated by $X^* = T$, the Tsirelson space, and thus our construction does not apply to every reflexive Banach space. Similarly, the sequence space $c_0(\mathbb{N})$ fails Theorem 2 since its dual $\ell_1(\mathbb{N})$ has the Schur property. It would be interesting to determine whether there exist separable spaces X, Y such that the image of every smooth map $X \to Y$ has empty interior. For example, an answer to the following question appears to be unknown

QUESTION 4.2: Does there exist a C^{∞} map of $c_0(\mathbb{N})$ onto an open subset of the Hilbert space $\ell_2(\mathbb{N})$?

References

- S. M. Bates, A smooth surjective rank-1 endomorphism of a Hilbert space, International Mathematics Research Notices 6 (1991), 71-73.
- S. M. Bates, On the image size of singular maps II., Duke Mathematical Journal
 68 (1992), 463-476.
- [3] S. M. Bates, Lipschitz mappings of Banach-Carnot groups, preprint, 1995.
- [4] S. M. Bates and C. C. Pugh, Super singular surjections, Pacific Journal of Mathematics, to appear.
- [5] B. Beauzamy and J.-T. Lapresté, Modèles étalés des espaces de Banach, Travaux en Cours, Hermann, Paris, 1984.
- P. Casazza and T. Shura, *Tsirelson's space*, Lecture Notes in Mathematics 1363, Springer-Verlag, Berlin, 1989.
- [7] R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific, 1993.
- [8] V. I. Gurarii and N. I. Gurarii, On bases in uniformly convex and uniformly smooth Banach spaces, Izvestiya Akademii Nauk SSSR 35 (1971), 210–215.
- R. C. James, Superreflexive spaces with bases, Pacific Journal of Mathematics 41 (1972), 409-419.
- M. I. Kadec, On topological equivalence of separable Banach spaces, Doklady Adakemii Nauk SSSR 162 (1965), 23-25; English translation: Soviet Mathematics Doklady 7 (1966) 319-322.
- [11] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, Berlin, 1977.
- [12] H. Rosenthal, Weakly independent sequences and the Banach-Saks property, The Bulletin of the London Mathematical Society 8 (1976), 22-24.
- [13] S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, N.J., 1964.
- [14] H. Torunczyk, Characterizing Hilbert space topology, Fundamenta Mathematicae 111 (1981), 247–262.

 Y. Yomdin, Surjective mappings whose differential is nowhere surjective, Proceedings of the American Mathematical Society 111 (1991), 267–270.